一站式电子元器件采购平台

华强商城公众号

一站式电子元器件采购平台

元器件移动商城,随时随地采购

华强商城M站

元器件移动商城,随时随地采购

半导体行业观察第一站!

芯八哥公众号

半导体行业观察第一站!

专注电子产业链,坚持深度原创

华强微电子公众号

专注电子产业链,
坚持深度原创

电子元器件原材料采购信息平台

华强电子网公众号

电子元器件原材料采购
信息平台

LTC2400简单轨对轨电路的简单差动前端技术处置方案

来源:analog 发布时间:2024-01-15

摘要: 当LTC1043的内部开关频率工作在标称300Hz时,如0.01 μ F电容器C1所设置的,当CS和CH使用1 μ F电容器时,LTC1043实现了最佳的差分到单端转换。CS和CH应该是薄膜类型,如聚酯或聚丙烯。

规范

V(cc) = V(ref) = lt1236 - 35;V(fs) = 5v;R(来源)= 175欧姆(平衡)
参数电路
(测量)
LTC2400总单位

输入电压范围-0.3 ~ 5.3
V

零位误差2.75
mV

输入电流看到文本



非线性±354ppm


输入参考噪声(不平均)101.5(µV) RMS

输入参考噪声(平均64分贝)1.5
(µV) RMS

分辨率(平均分辨率)21.7


电源电压55V

电源电流0.450.2妈。

CMRR118
dB

共模范围*-5 -5
V

*0V至5V为单5V电源

操作

图1中的电路对于具有5V或±5V电源的应用中的宽动态范围差分信号是理想的,其中绝对精度次于高分辨率。该电路使用一半的LTC1043在包括电源在内的输入共模范围内执行差分到单端转换。它使用LTC1043对差分输入电压进行采样,将其保持在C(S)上并将其传输到接地参考电容器C(H)。将C(H)上的电压加到LTC2400的输入端并转换为数字值。

当LTC1043的内部开关频率工作在标称300Hz时(由0.01µF电容器C1设置),以及当C(S)和C(H)使用1µF电容器时,LTC1043实现了最佳的差分到单端转换。CS和C(H)应为薄膜类型,如聚酯或聚丙烯。

通过在C(S)周围放置保护屏蔽并将屏蔽连接到LTC1043的引脚10,可以提高转换精度。这最大限度地减少了由C(S)相关的杂散电容传递误差引起的非线性。有关更多信息,请参阅LTC1043数据表。在所有高精度电路中,保持所有引线长度尽可能短,以尽量减少杂散电容和噪声。

像所有得尔塔 - 西格马转换器一样,LTC2400的输入电路在输入信号上产生小电流尖峰。这些电流尖峰会干扰LTC1043的CH上的电压,从而导致失调电压和增益误差的有效增加。这些错误保持不变,可以通过软件消除。如果没有这种减少零误差和满量程误差影响的端点校正,整体精度就会降低。然而,输入动态范围没有受到影响,整体线性度保持在±35ppm,即14.5位。

对于具有上下摆动的共模电压的输入,将引脚17连接到负电源,如图1所示。当在地和LTC1043的正电源之间施加具有共模电压的差分电压时,将引脚17 (V -)连接到地以进行单电源操作。如上所述,当使用1µF电容器时,LTC1043具有最高的传输精度。使用任何其他值都会影响准确性。例如,0.1µF通常会增加电路的整体非线性,并将CMRR降低10倍。

LTC1043的内部振荡器的频率将随着电源电压的变化而变化。这种变化表现为增加的噪声和/或增益误差。例如,LTC1043的电源电压变化100mV会导致LTC2400的增益误差为14ppm。如果这种变化是短期的,则该误差显示为噪声。LTC1043在标称共模输入为3V时显示最大增益误差。这些错误可以通过使用外部时钟来减少。当LTC1043的V(CC)从标称5V增加时,增益误差最为显著,低于5V时,线性误差变得更加显著。

电路的输入电流取决于输入信号的大小和参考电压。对于5V基准,输入电流在零量程时约为-1 μ a,满量程时为1 μ a,中量程时为0 μ a。该值可能因地区而异。图1的输入连接到一个2µF电容器,并联一个2.5毫欧连接到V(REF)/2。LTC1043的标称800欧姆开关电阻位于源和2µF电容之间。此描述适用于电容器并联连接到LTC2400输入的情况。

该电路最适合于信号波动大、源阻抗在500欧姆以下的应用。


图1所示。简单轨对轨电路将差分信号转换为单端信号
声明:本文观点仅代表作者本人,不代表华强商城的观点和立场。如有侵权或者其他问题,请联系本站修改或删除。

社群二维码

关注“华强商城“微信公众号

调查问卷

请问您是:

您希望看到什么内容: